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SCIENTIFIC OFFICER: Dr. R. Madan

DESCRIPTION OF WORIL The objective of this contract is to develop new
robust techniques for estimating the directions of arrival of multiple signals
utilizing the available multi-sensor information. This includes direct procedures
utilizing the generalized eigenvalues associated with certain matrices generated
from the signal subspace eigenvectors of the actual array output matrix. In
addition, this proposal addresses the problem of analyzing these techniques to
evaluate their performance when the array output cross-covariances are directly
estimated from the data. In this regard, the mean and variance expressions for
the angle-of-arrival estimators can be used to derive thresholds for resolving two
or more closely spaced sources.

Further, by interpreting the maximum entropy method (MEM) of spectrum
estimation in terms of maximization of minimum mean square error for a one
step predictor, a new class of spectrum extension problems to identify the best r-
step predictors is proposed.

FY88 PROGRESS: A comprehensive asymptotic analysis of a class of high
resolution estimators for resolving correlated and coherent sources in white noise
has been completed. Using these results resolution thresholds have been derived
in two and three source scenes for uncorrelated as well as coherent situations.

Given a finite set of n autocorrelations of a stationary discrete-time
stochastic process, the well known problem of extending this given sequence so
that the power spectral density associated with the resulting infinite sequence is
nonnegative everywhere is further investigated. Motivated by the maximum
entropy extension, which is equivalent to the maximization of the minimum
mean square error (MMSE) associated with one-step predictors, the natural
extension of maximizing the MMSE for r-step predictors compatible with the
given correlations is studied. This analysis shows the resulting spectrum
corresponds to that of a stable ARMA (n, r - 1) process.
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Technical Report

This research report concerns primarily with new algorithms in

estimating signals from sensor output measurements. A complete performance

analysis of the proposed algorithms is developed in Appendix A together with new

results for resolving two and three uncorrelated/coherent signals.

Appendix B concerns with the problem of extending a given set of n

autocorrelations so that the power spectral density associated with the resulting

infinite sequence is nonnegative everywhere. Motivated by the maximum entropy

method, which is equivalent to the maximization of the minimum mean square

error (MMSE) associated with one-step predictors, the natural extension of

maximizing the MMSE for r-step predictors compatible with the given

correlations is studied. It is shown here for the first time that the resulting

spectrum corresponds to that of a stable ARMA (n, r - 1) process. )The details of

this optimum filter for a two step predictor are presented in Appendix B along

with several other interesting conclusions.
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Appendix A

New Resolution Threshold Results in

Three Source Scenes

Abstract

This paper presents new performance analysis results in a three-source scene, when
MUSIC-type high resolution estimators are used to estimate the directions of arrival of
incoming signals. A two-source scenario has been popularly used to measure the qualit
of various estimators in terms of the SNR required to resolve (resolution threshold) two
closely spaced sources. Similar results in a more realistic three-source scene is presented
here for uncorrelated as well as coherent situations along with some interesting possibili-
ties that deserve futher study.

I. Introduction

Given a set of alternatives that perform identically under ideal conditions, one

important question is how to measure their robustness or sensitiveness to imperfec-

tions that will invariably exist in reality. To illustrate this, consider the array process-

ing scene where a set of sensors collect data from signals present in their field of view

in presence of noise. Under the assumption that the sensor noise are independent and

identical between themselves, a variety of high resolution techniques have been

developed in the recent past [1 - 5] to estimate the directions of arrival of incoming

signals. They all depend on the fact that the covariance matrix formed from the sen-

sor array output data has several interesting structural properties. For example, in an

equal noise situation when none of the signals present in the scene are completely

coherent with each other, the direction vectors associated with the actual arrival

angles can be shown to be orthogonal to the eigenvectors corresponding to the lowest

eigenvalue of the array output covariance matrix. This forms the basis for the MUSIC

* The authors are with the department of Electrical Engineering and Computer Science at
Polytechnic University, Brooklyn, New York. This work was supported by the Office of Naval
Research under contract N-00014-89-J-1512.
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algorithm [1] and several of its successors.

The coherent source situation can also be brought under this formulation, by

employing certain preprocessing on sections of the array output covariance matrix. In

this regard, the subarray averaging scheme [6-8] effectively creates a smoothed covari-

ance matrix that is structurally identical to a covariance matrix in some correlated

situation. Even more resent schemes such as ESPRIT, TLS-ESPRIT [3, 9], that make

use of an underlying rotational invariance property of certain vectors in the signal sub-

space stems from the above idea. More interestingly, under ideal conditions, all these
S

techniques perform identically, i.e., when the ensemble averages of the array output

covariances are exactly known, any source situation that is resolvable by any one of

these techniques can also be resolved by any other scheme that belongs to this general

category, in contrast to - say - the linear prediction method.

However, the situation is entirely different when array output date is used to esti-

mate these covariances. In that case, all these techniques can be viewed as distinct

algorithms and they will perform differently for the same source scene. Several cri-

teria have been proposed to evaluate their performance under such conditions. Of

these the bias and variance of the estimator give reasonable information about the

robustness of the estimator under consideration compared to other techniques. A

more meaningful physical measure under these circumstances is the signal-to-noise

ratio (SNR) required to resolve two closely spaced sources. At least qualitatively, this

information tells about the sensitivity or superiority of the technique under considera-

tion. The bias and variance expressions described above has been used in this connec-

tion to evaluate the resolution threshold in a variety of two source scenarios [10-13].

Naturally, two source scene is often unrealistic, and to evaluate the degradation

in performance of these estimators in a general set up it is necessary to analyze at

least a three-source scene. Reevaluating the resolution threshold in such a scene will

also indicate the relative degradation in performance because of the presence of yet
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another source and in this paper we propose to address this problem in uncorrelated

and coherent situations.

II. Main Results in a Three-Source Scene

In this section we will consider three source scenarios in two extreme situations,

viz, the uncorrelated ease and the coherent case. The uncorrelated case represents the

best possible scene in terms of the SNR required to resolve three signals and the

coherent scene represents the worst scenario because of the complete dependence

among the signals. As remarked earlier, the coherent scene can be decorrelated by

employing the forward/backward smoothing scheme on the subarray output covari-

ance matrices [8]. Though, in general, this requires additional number of sensor ele-

ments, interestingly any source scene containing two coherent signals can be decorre-

lated without the use of extra sensor elements. In fact, the mean of the array output

covariance matrices corresponding to the forward array and its complex conjugated

backward version can always resolve any such source scene [8] and for uniformity in

comparison, we will adopt this situation in this study. Thus, the coherent scene under

discussion here will consist of two coherent signals that are uncorrelated with the third

signal. The analysis that follows in that case will utilize the forward/backward

smoothing scheme that employs the forward array and its complex conjugated back-

ward version to decorrelate and resolve the three signals and their arrival angles. To

begin with, we consider the uncorrelated source scene.

IIA Uncorrelated Signals

Consider three uncorrelated, planar source waveforms u 1(t), 112(t) and ts3 (t)

arriving at an M-element uniform linear array along the directions 01, 02 and 03 with

respect to the line of the array. Under i.i.d. noise conditions the M x M array output

covariance matrix has the form (1) [8]
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R AR At + 2(1)

whe. the uncorrelated condition among the sources implies that, the source

covariance matrix has the form Ru = diag [P 1,P 2,P 3 1 where Pi 4E[Iui(t) 12],i =

1, 2, 3 represents the signal power. Moreover

A = VMT [ a(w), a(w2), a(w3) ] (2)

where

1wk -~ I - 2W e 4 2
wk - (M-1)wk T w-7rcosOk (3)a(w)k 1 e ,e , -e Wk r O 3

represents the direction vector associated with the arrival angle 0', and a"

E[ I ni(t) 1 2],i = 1, 2, "', M denotes the common noise variance.

If A1  A2 > ... > A. and 01, 02, ... IM represent the eigenvalues and

corresponding normalized eigenvectors of R, i.e.,

M
R A,3J3 (4)
i=1

then in this particular setupAi -a for i > 3 and moreover i a(wk) = 0, for all i > 3

and k = 1, 2, 3. Thus, the zeros of

a(to) E -- lia(Wo)l =2 --1-E I fla(wo)[12  (5)

i-4 i-.

represents the true angles-of-arrival [1] and in principle, this estimator can resolve any

three sources irrespective of their angular separation.

However, when array output data sample vectors are used in estimating R by

means of any standard procedure, the corresponding estimator in (5) is a random vari-

able and the above conclusions are only approximately true. In fact, when the

(1) Hereonwards a (or A ), a and A stand for scalar, vector and matrix in that order.
Similarly, A, AT and At represent the complex conjugate, transpose and complex conjugate
transpose of A respectively.
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maximum likelihood method is used to estimate the covariance matrix R using N

data vectors, the associated estimates of eigenvectors so obtained can be used in (5) to

generate the sample estimator 6 (w). The statistical properties of Q (w) has been well

documented in the case of zero mean complex circular Gaussian data for the general

setup when smoothing is employed on the subarray covariance matrices to decorrelate

coherent signals present in the data [11, 12]. As a special case of this general analysis,

the bias and variance of the sample MUSIC estimator, . (w) has been shown to be

[ii]

1K " 2 +(M- K) 1 6a(w)12-Q ) +O(- (6)

and

22 K 2 , 1 2+,I0( . 7

Vari- (A. (w) ())7

Thus, in particular, within the above first-order approximation Var (Q (wi,)) = 0. 1 <

k < K. However, along the true angles of arrival, E [0 (wk)] # 0 (see (6)) and the

deviation of E [0 (wk)] from zero - their nominal value - suggests the loss in resolution

for this estimator below a certain angular separation. Since the estimator has zero

variance along the true arrival angles, for a fixed number of samples a threshold in

terms of SNR exists below which the nulls corresponding to the true arrival angles are

no longer separately identifiable. Considering two sources at a time, the correspond-

ing sources are separately identifiable if the bias at their middle angle is larger than

the maximum of that at either of the two arrival angles. Letting 01 < 02 < 03, this gives

rise to the following inequalities for resolvg three sources:

E[ ((w, + w2)/2)]>max(E[.(w),E[.(w)I} (8)

and
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E[6( (w2 + w3)/2)] >max{E[ .(w 2)] ,E[.(w 3)]}. (9)

When the sources are equispaced, i.e., w, - w2 =w - w3, the minimum value of SNR

that satisfies both (8) and (9) may be taken as the resolution threshold in a three-

source scene. In the special case, when all signal powers are equal ( Pi = P, i = 1, 2,

3), from the resulting symmetry it can be established that

E[6.((u 1 + wj2)/2)] = E[ ((w 2 + 3)/2)],

E [ 6(2) ] _E [60(wj) ] = E[60(w3) ]

and (8) and (9) collapses into

E[ ((w, + w 2)/2)] E [ (w 2)] •  (10)

Hence, by definition, the desired (normalized) resolution threshold MP/a

satisfies (10) with an equality and in that case one can resolve three equipowered,

uncorrelated sources.

To complete the analysis, from (6), it remains to obtain explicit expressions for

the eigenvalues and eigenvectors associated with the signal subspace of R and we

proceed to do so in the next section.

II.B Eigenparameters in a Three Uncorrelated Source Scene

To begin with, notice that (from (1)) the three largest eigenvalues A,, X, and A3 of

R are related to the eigenvalues &1, t and 43 of the 3x3 matrix, R AtA through the

relation

Ai = 'i + 2 , i =1,2,3. (11)

In an equipowered situation, however,

1 P12 P13  0 P12 P13

R. AtA = MP p 1 p23 = MP 13+ P12 0 P2 (12)

P13 P23 1" P:3- 0



where

pi A-at(w )a(wk) , i,k = 1,2,3

represents the spatial correlation coefficient between the i th and k th sources. Thus, if

v1, v2 and t 3 represent the eigenvalues of the zero axial matrix

0 P12 P13

B= _ o p ,2 (13)

P . P23 0

then from (12)

1 =MP(1+vi) , i =1,2,3. (14)

Towards obtaining the eigenvalues of the above zero axial matrix, observe that in an

equispaced source situation (i.e., wl - t2= - 3 - 2,, d ) ,

Pz e 2 = e PS ; Ps M sinwd (15)

and

j 2 (M.1)Wd sin 2 M wd j2(M-)w, .P cosM U 1
p = e M sin 2Wd -Ce PSP , Pc - cosWd (16)

With (15) and (16) in (13), its eigenvalues satisfy the cubic equation

IB - v 3 1 = V 3 _ 2(2 + )-2pp =0. (17)

Interestingly, the above equation can be factored into the form

2 _2(v+ P PC)( P p 2p)

and hence the three real roots of (17) are given by

L2 = -Ps PC
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(PCvl3= - ±-  V ---

which gives the desired eigenvalues in (14) to be (in decreasing magnitude when p,, Pc

are positive; i.e., for small angular separations)

= MP(1 -P. , (8.a)

A, =MP 1 + (C !+ 8 (18.b)

I3 MP[1+ TfPs(c-Vpcr + 8J (18.c)

From (4) and the discussion that follows, it is clear that the eigenvectors associated

with (11) are linear combinations of the true direction vectors, Le.,

i ca( w ) + kIi a(w2) + k2i a(w3) , i = 1, 2, 3 (19)

and

(AR At)fl = M P(a(wj) at(wj) + a(w2) at(w2) + a(wj3) at(w3)) fli = i fli i = 1, 2, 3.

(20)
With (19) in (20) and equating coefficients of the true direction vectors, we obtain

three consistent equations for each i. Using two of these equations the unknowns k Li

and k2i in (19) can be evaluated (for details, see section II.C) and after some algebra,

this gives

62c (e i(M4 )Wdda(w) - e -j(M-1)Wd a(w)

(e a(w)+e a( + 3

and

Pc~V ]1a+ e a(2 p 2 a(w_).

+LI e j(M-1)W~wj+e -j(M-1)Wd aw3) + I8
3 -12-



Letting

ui =e a(wi ) i =1,23 (21)

and normalizing the above vectors, with the help of u1u. = u2u3 = Ps, uIu 3 =Ps Pc

we obtain the desired eigenvectors to be

u( - 22)2 (1 -(lps pc )(2

and

c~i (u1 + u3) + c21 u2
Cil= i + U1,3 

(23)

V2C2(1 + pspc) + 4c C2i PS+ 2
Si P+c 2i

where

2

c U 2 2 2i - "2 2

Notice that P2 is orthogonal to u2 and is a linear combination of ul and u3 only.

As remarked earlier, the desired resolution threshold satisfies (10) with an equal-

ity and in an equipowered, equispaced three source scene the above eigenparameters

can be used to evaluate that explicitly. Towards this purpose using (11) and (14) we

get

(Ai 2 -(I + 2 2 (24.a)

where the array output signal-to-noise ratio is

e -MP/a 
2

and

Ii -1 +i , i = 1,2,3. (24.b)
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Thus with K = 3, from (6)

M-3 3 Pia(w2)2 ila(w2)1 2 +

N , 72-.2 J + 2 (21

and similarly with wm = (w1 + w2)/2 representing the middle angle, we have

E[ (wm)1 = Q(Wm) + 13 (M-3) I1Ia(wm) 12 -Q(w",)

(M-3) 1 tia(wm) Z -(Q(6n)
+ ~l+ (- (26)

Finally, equating (25) and (26) and neglecting terms of order less than 1/N, we obtain

the quadratic equation

a3e 2 + b3e + c 3 = 0 (27)

and this gives the desired resolution threshold output SNR in an equipowered,

equispaced, uncorrelated source scene to be

- b 3 + 2b8 4a3C3

e3 =  2a 3  (28)

Here

a3 -Q(W m)

3 (M-3)( I1 Pa(wm) 12 - I P t a( 2)Ij2) -Q(w,, 1 )
3N7E

1 3 (M -3)( (6jt a(un )12 I If a( 2 )2) -Q (w,,)
3 I14
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and 1j, 6i, i = 1, 2, 3 are as in (22)-(24).

The corresponding threshold results in a two source scene can be utilized to esti-

mate the degradation in performance created by the presence of a third source. In the

case of two equipowered uncorrelated sources, the resolution threshold has been

shown to be [10],

2( ) N 21/2

=2 A4O~-)1  5 M - 2) AJ] (29)

where

2A 2 2A =M Wd/ 3 .

Though e3 and 2 possess similar features, for a given array the resolution threshold in

the three source case can be much larger than that in the two source case. The above

asymptotic analysis is also found to be in agreement with Monte Carlo simulation

results. Table I represents a typical case study. Simulation results indicate that when

equality holds in (10), the probability of resolution ranges between 33 to 50 percent in

both cases. This suggests that the above results should give an approximate threshold

in terms of for 0.33 to 0.5 probability of resolution region and comparisons are car-

ried out in Fig.1 using (28), (29) together with simulation results from Table 1 for this

range of probability of resolution. Fig. 2 shows another comparison for a different

array length. From these data it is also clear that, for the same SNR, sources that are

located around the broad side of the array can be much closer than those arriving

along the line of the array. Notice that in all these comparisons, the source locations

have been chosen such that they are always well within'the main beam of the array.

Interestingly, these results indicate that the presence of a third source, that is

symmetrically located with respect to the center source, increases the SNR required to

resolve the original two sources approximately by a factor of two (in dBs). This in

turn speaks for the sensitivity of the MUSIC-type eigenstructure based algorithms.
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In the next subsection we proceed to analyze the coherent case, where two of the

three signals present in the scene are completely coherent with each other and the

third signal is uncorrelated with these two signals.

II.C Two Coherent Signals (and an Uncorrelated Signal)

As remarked earlier, the coherent scene under discussion here consists of two

coherent signals that are uncorrelated with the third signal. The coherent signals can

be the outermost ones or the adjacent ones, and since only one of these situations is

symmetric, these two cases have to be analyzed separately. Thus (a) u ,(t) and u3(t)

are coherent and u 2(t) is uncorrelated (the symmetric case) or (b) u 1(t ) and uz(t) are

coherent and u 3 (t) is uncorrelated with the other two signals. Of these two situations,

we will only deal with the seemingly 'simpler' symmetric case, the details of which

itself turn out to be quite involved.

To begin with, in the symmetric case, consider the perfectly coherent situation,

i.e., u 3(t) = ul(t) and the mid-signal u,(t) is uncorrelated with the adjacent ones. By

employing the covariance matrices corresponding to the forward array and its complex

conjugated backward version, the above coherent situation can be decorrelated. In

that case the smoothed covariance matrices associated with the mean of the above

covariance matrix has the form [12]

RJ+Rb 
10

R 2 -PA 0 1 0 At + 2I (30)

At. 0 1

where

+ (M-1)W1 -j(M-)W3, _1 +e e (3)

2 1)

-16-



represents the effective correlation coefficient due to f/b smoothing (2). Here W' and

R stand for the forward and backward array output covariance matrices. Clearly, Rf

is the same as R in (1) and with 0 as in (A.9)

Rb = AeM- R"t-(M-I)At + a2 I.

Using (2) and (31) in (30), we have

z = M P (a(w) a(w 1) + Pt a(w3) a(w1) + A, a(w1) at(w3) + a(w3) at(w3) + a(w2) at(W2) J + a I

MP b bb2 + b3b3t) +a 2 = BBt + a2I
2 32

where

bI  a(w1 ) + a(w3)

b2 - v/2a(w2 )

b3 4e a(wl) + e a(w3)

and

B -[bl, b2 ,b 3 ].

- M 2
Since R = "i i with ". " a for i > 3, again, the signal subspace eigen-

i-I
values A1, ), "of 1R are related to the three positive eigenvalues t, 4, 3 of Bt B/2

through the relation,
2

Ai=MPai +a , i = 1,2,3. (32)

However,

(2) Clearly, 10, 1 should not be equal to 1, or the angular separation(= 2 w,) should not be in
the neighborhood of kir/(M-1), k = 0, 1, 2, "'. However, in general u 30) = a ,tz(t),
where a represents the complex attenuation and in that case the above restriction does not
hold.
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P11 P12 P13
I~t
2 = 22223

AlP23 P33

where by definition

AUi2 bit b

and in particular with

Pt 4cos2(M-)wd (33)

and p, p as defined before, it is easy to show that

All =33 = +Ps P P1  (3 4.a)

22= 1 (34.b)

p12 =Vr2p, COS (M - 1) Wd (34.c)

p23 =e P12(34.d)

A j ei(M - )W2 (. ' ,(4e

It now follows that the eigenvalues of Bt B/2 can be written as

Aj= -P1 1  =(1 (+pspcpt)-i~ , i = 1, 2, 3 (35)

where i are given by the real roots of the cubic equation

A/ 12  P13

A12 P-PsPcPt 923=

P2I3

18-



3 - pscpt(2 2 2)C + 2Re(A2A , 0. (36)
p ~p,P - 1013 1 ) (2 1,0122+ I A13 (36)

With (34.a) - (34.e) in (36), it reduces to

-3 2 _ 2) 2-1 + , (2+ + + P,)2) C + 2p2(1 + P,)(pP + P)

C - + PS)P (+2 + ((PPc+ P,) -- PPCP) j - 2ps2( + - (PsP¢+ Pt)J = 0.

Thus, the roots of the above equation are given by

do V2 = Ps Pc + Pt (7a

013= - -2 ( (Ps P, + p, - Ps pc~t p, -  (-37.b)

where

D -(pspc + p, + pspcpt ) 2 + 8p 2(1 + Pt). (3"7.c)

Finally with (37.a) - (37.b) in (35) and (32), we get the desired signal subspace eigen-

values to be

2 = MP 12 + a2 = MP (1 -p pC) (1 Pt) + 2 (38)

2 MP (
1,3 = MP t&1,3+2- 2 l+ (1+ ps pc)(+pt)- ) + a (39)

with D as defined in (37.c).

Towards obtaining the eigenvectors h1, A2, 13 associated with these eigenvalues,

notice that once again they are linear combinations of the true direction vectors or

equivalently those of u1, u2, u3 with ui as given by (21). Thus,

AOC u 1 +k 2i u2 +k 3i u3 , i = 1,2,3. (40)

To make further progress, we rewrite the smoothed covariance matrix A also in terms

of u1, u. and u3. Using (21) and (33) in (30), this gives

-19-



=~~~~~ + ({ U. ,.> q , + U3 +,) a 2, 141)
tM P( (Ul+Pt U3) t + U2 it4+ 1+ 3)i4 +Ul (1

Since

lthi =  i i , i =1, 2, 3, (42)

with (32) and (41) in (42), it reduces to

( (ul + Pt U3) u l + U2 u4 + (Pt u + U3) ul ) i 
= ii  ,i = 1, 2, 3.

Finally, using (40) and equating coefficients of ui on both sides of the above equation,

we obtain

P,(l+P') PP+Pt k2i -(l+PsP'Pt)
I -i P1 - PS (43)

For reasons that will become apparent soon, using the first and third row this gives

k2i ((PsP, + P, )2-( + P.,P, Pt _-Ai) 2)lai

(44)

provided

SA P (1 + P) ((1 - PP)(1 - p,) - . 0.

Since A2 = 0 and A1 and A3 are nonzero, using (40) and (44), the eigenvectors/ and

13 can be expressed as

0, , (1 + Pt ( ,- ,,,,)(',- ,,)- ,)J (u, + u3)
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- ( (1- - - A ) (1 + - Ai + Pc + Pt )U2

ocp(l+p,)(U 1+u 3) + (i/ ;-(1+ppc)(1 +p,))u 2  for i = 1,3.

By making use of the exact expressions for 1,3 from (39) in the above expres-

sion, the corresponding normalized eigenvectors take the form

ps (+ pt) (u+ u3) +d.U 2
(45)

where
1/2

=~~~~~~ PS (1) -( 5
(1 + ± (( ( + P~) )I + 8p2(1 + P,) 1/

(46.a)

and
2 2.2

1. Ij = 2ps2(1 + p,) 2 (1 + psp,) + 4ps(1 + pt)d + di  (46.b)

Next we turn our attention to evaluate 2. Since the determinant corresponding

to the first two equations in (43) is not zero, they can be utilized for this purpose. In

that case, proceeding as before it is easy to show that

2 ockju1 + k 2 u2 + k 3u 3

where

1I = Ps (1 + Pt) + (2 -)(P, Pc + Pt)

k2 = Ps (i -(I- - P 5PC)J
k3  ~ P =c ( -I -p, p,(AZ2 _ 1) -o2(1 + p,)

By making use of (38), it follows that k 2 = 0 and k 3 = - k , which gives

/32 c C u - U3
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or, finally

U1 - U3

62 =-- (47)

Clearly (38) - (39) together with (45) - (47) completely characterizes the Z,,gnal sub-

space eigenparameters in a three-source scene consisting of two symmetrically located

coherent signals and a centrally located uncorrelated signal in terms of the input signal

specifications and the array geometry.

The bias and variaace expressions in the f/b case can be used to obtain the

corresponding resolution threshold in this case. General expression for bias in the f/b

case has been shown to be [11,12]

1_ ' Mi t 2 -t 2

OW) (WJLi--") = -P E 1 )2 (.i a(w) I IA"a(w)I)

M M t t
E at(WAj (w) + O(T) (48)

k - 1 i-i (\i - Ak)( -A )
kjbi I i
kpbi

and

i-lj-1k-II-I
k yi I kj

R e( f ji at w) 6 ,ta(w ) + r~ j j a( ) P , l t a(w ) ) a (w ) 'S k i t a(w ) +'1) 49

(~ Ak)Q+ -O( -))+(49)

where

3 t 2(uj) =1-E hi a7(w) I2
i-I



=i, i 4 { ' & tRfk jR + pitebfk IR Aj + . j'R 1f~ jR,~ + Ajtb , -JtRfI)

(50)

and i is the inverted A," vector with ry,,m =',M-m+r As shown in Appendix A, t,

i - 1, 2, ... , M form a complete set of eigenvectors for A and using this together

with certain relations regarding equivalence of eigenvector sets of a matrix, for the

above source scenario it is shown in Appendix B that

N_ _ _ _ _ t 2 2 1 )

and

Va(()=2Q(w) 3 ______2 1

wher (6 M) =2 -1i~i a(w)j+0(-T) (52)
One a f(2 w

where

4P2M'sin 2(M - 1t 2

( 2- 1) ( 2- 3)  t t-tA M

Notice that the additional term B (w) in (5 1) is independent of the noise variance a.

Once again, following (24.a) we obtain

M-3 3 I l 1 a(w2) tfi a(w2)I B (w,)
E[O(w2)] = - 2 + +O(-F) (53)

2N Aj 2 J

1( 3 1 (M -3) Ili a(wm)I - Q(w,)

(M -3) t1flia(w,, ) I -_(w.) B(() 1
+ 1 + +O(- 2). (54)J . -NN



Finally, equating (53) and (54) and rearranging the terms, the resolution threshold

associated with a three-source scene consisting of two symmetrically located coherent

signals and an uncorrelated center signal satisfies the relation

a3 2 + + e3 =o. (55)

Here

B() -B( 2)
d 3 = Q(W.) + (56.a)N

(M - 3) I2 ta(w )2 -  a(w2) 12) -(%)

b3- (56.b)
2N i /mi

1 3 (M - 3)(1ia(wm)i2- ta(w 12) -_Q(w,)

3 -2 (56.c)2N i- -2

The signal subspace eigenparameters that have been obtained in (38) - (39) and (45)

- (47) can be used to compute the desired resolution threshold in this case exactly.

Once again the corresponding threshold expression in a two-coherent source scene

can be utilized to estimate the degradation in performance by the presence of an

uncorrelated, third center signal. In the case of two coherent sources, the resolution

threshold has been shown to be [11]
2

2- - + +. ( 5 7 )
C2A 3A 20 _15M(M -4)

Table 2 represents a typical case study for a three-source symmetric coherent

scene described above. From these simulation results, equality between (53) and (54)

corresponds to 0.33 to 0.5 probability of resolution and Fig. 3 shows comparisons

between (55) and (57) for this probability of resolution.
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Equation (55) is derived based on the assumption that inequalities in (8) - (10)

are satisfied. However, in the coherent case for certain angular separations, the above

inequalities can reverse their signs and in that case the above threshold expression is

meaningless. This is because the relative magnitudes of eigenvalues can be different

depending upon the actual angular separation and consequently the additional term

B (w) in the general bias expression in (51) can change its sign so as to reverse the ine-
2qualities in (8) - (10). Since B (w) is independent of N and a , from (56.a), for large

N, d 3 = Q (wn) > 0 and in that case a solution always exists.

III. Conclusions

A three-source scene, under uncorrelated and coherent situations, is separately

analyzed to evaluate the sensitivity and robustness of MUSIC-type high resolution

estimators in resolving closely spaced sources. When the null spectrum estimator is

used to locate the directions-of-arrival of incoming signals, for a fixed number of sam-

ples, a threshold in terms of SNR exists below which the nulls corresponding to the

true arrival angles are no longer separately identifiable. Clearly, in a two-source scene

the corresponding sources are separately identifiable if the bias at their middle angle

is larger than the maximum of that at either of the two arrival angles. This definition

is extended to three-source scenes here, by considering pairs of signals at a time and

choosing the maximum of the respective threshold values to be the desired SNR

required to resolve the three source situation. This is made possible by first obtaining

parametric expressions for the eigenparameters in three source scenarios and using

them in the appropriate bias expressions. The parametric expressions for eigenparam-

eters in a three-uncorrelated and coherent situations (the two outermost signals are

perfectly coherent and the center signal is uncorrelated with the coherent group)

derived here is believed to be new.

The threshold SNR in three source scenes so obtained are compared with

corresponding results in two source situations. These results indicate that in the
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uncorrelated case, the presence of a third source increases the SNR required to

resolve the original two sources approximately by a factor of two. It may be remarked

that the smaller increment in SNR in the 'symmetric' coherent case can be attributed

to the larger angular separation (4wd instead of 2 wd) between the coherent signals in

the three source case. In turn, these results also speak for the sensitivity of MUSIC-

type eigenstructure based algorithms when an extra source is introduced into the

scene.

In this paper we have only analyzed the symmetric coherent case. The other pos-

sibility, where an uncorrelated signal is introduced into a two coherent signal scene

such that the angular separation between the uncorrelated and any one of the

coherent signal is the same as that between the coherent signals deserves further

study. This 'more natural' case seems to be quite involved because of the absence of

any symmetry that is present in the coherent case anaylzed in this paper.
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Table 1

Resolution threshold and probability of resolution vs. angular separation for
equipowered sources in an uncorrelated scene. (number of sensors = 7, number of
snapshots = 100, number of simulations = 100). Probability of Resolution A Total
number of successes in 100 simulations/100.

Angles of arrival Angular Three source Two source
Separation scence scence*

8 0, 02 03 2 oCd SNR(dB) Prob SNR(dB) Prob.

23 0.26 9 0.28
340 400 45.330 0.1979 24 0.37 10 0.36

25 0.43 11 0.47
1 26 0.51 12 0.60

14 0.27 3 0.31
600 660 71.730 0.2930 15 0.33 4 0.36

16 0.43 5 0.48
17 0.53 6 0.61

11 0.3 2 0.27
1270 1350 144.330 0.3308 12 0.30 3 0.41

13 0.41 4 0.53
1_ _1_1__ _ 14 0.50 1

* In the case of two source scene, the first two angles of arrival are used in actual
simulation.
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...... three source case

30+ three source case simulation with N = 100

- two source case

two source case simulation with N= 100

20.
THRESHOLD .

SNR (de)

10-

0-

0.15 0.25 0.35

ANGULAR SEPARATION

Fig. 1. Uncorrelated source scene: Resolution threshold vs angular separation for
three equipowered signals as well as two equipowered signals. A seven element array
is used to receive the signals in both cases. Each simulation point represents one hun-
dred trials with probability of success for resolution ranging from 0.33 to 0.5.

-29-



. three source case

two source case

* two source case simulation with N= 75

20-
THRESHOLD +." ""

SNR (dB)

10-

0.1 0.15 0.2

ANGULAR SEPARATION (= %2" omega sub d %)
Fig. 2. Uncorrelated source scene: Resolution threshold vs angular separation for
three equipowered signals as well as two equipowered signals. A ten element array is
used to receive the signals in both cases. Each simulation point represents one hun-
dred trials with probability of success for resolution ranging from 0.33 to 0.5.
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Table 2

Resolution threshold and probability of resolution vs. angular separation for
equipowered sources in a symmetric coherent scene. (number of sensors = 15,
number of snapshots = 100, number of simulations = 100). Probability of
Resolution A Total number of successes in 100 simulations/i00.

Angles of arrival Angular Three source Two source

separation scence scence*

01  02  03  2Od  SNR(dB) Prob. SNR(dB) Prob.

28 0.31 23 0.17
1550 1580 161.450 0.0656 29 0.34 24 0.35

30 0.41 25 0.6731 0.54

19 0.27 12 0.16
1100 1120 114.030 0.1024 20 0.37 13 0.36

21 0.48 14 0.59
22 0.64

12 0.25 4 0.23
550 580 60.900 01372 13 0.37 5 0.38

14 0.47 6 0.63
15 0.61 1 1_ L

* In the case of two source scene, the first two angles of arrival are used in actual
simulation.
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............ three source case
+ three source case simulation with N = 100

"'".... two source case
two source case simulation with N= 100

20-

THRESHOLD
SNR (d)

*°o

10-

0-
0.06 0.1 0.14

ANGULAR SEPAkATION (= %2" omega sub d%)

Fig. 3. Coherent source scene: Resolution threshold vs angular separation for three
equipowered symmetric (two coherent and one uncorrelated) signals as well as two
equipowered signals. A fifteen element array is used to receive the signals in both
cases. Each simulation point represents one hundred trials with probability of success
for resolution ranging from 0.33 to 0.5.
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Appendix A

Consider an uncorrelated-source scene where at most two signals may be com-

pletely coherent. Thus either all signals are uncorrelated with each other or two are

perfectly coherent, while the rest is uncorrelated with each other and with the

coherent group. In both situations we will show that in the case of a uniform array, if

19 4 -,-"'", AM denotes one set of eigenvectors of the smoothed covariance matrix A,

then their inverted and complex conjugated counterparts i = J i*, i = 1, 2, , M
4

also form a new set of eigenvectors of . Here by definition

01

1 1 .

Proof

Let

[All AM(A- )

N= [" ] J (1.2)

The smoothed covariance matrix has the form

-Af. At + 2I (A.3)
where

1 b " 1

6 2 2

A - (A.4)

6! W 1
1 62 KJ



with 6k = e -j lWk, k = 1, 2, ... , K and ft. represents the smoothed source covari-

ance matrix. Clearly, in the uncorrelated case

Au = diag [P1, 2 , "'K] (A.5)

and in the latter case consisting of two coherent and uncorrelated signals - say - ( the

first and the second)

P1 Pt 0 0 0

P t*P 2 0 00

Ru, 0 0 P 3 0 0 (A.6)
0 0 0 -0

o o 0oo K

where

Pt=IPP2 2 M "

Since Ai, 1 < i < M represents a set of eigenvectors for , we have

= eATt (A.7)

where A is real, positive and diagonal. Now

GAG = JI* A(JB*)t = J * J = (JA-) Iu (JA)t + 02 1. (A.8)

However, using (A.4)

JA" = AtM-

where

=diag [61 , 62 .1 6K I (A.9)

and hence (A.8) simplifies into
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GAdt_- A(OM-'.(M-))At+o.0 2

=AR1 At + = (A.10)

since M-1-(M-).* for either forms of ft given by (A.5) or (A.6).

Interestingly, if some of the entries in A are distinct, say the first K, then since

A = At = At (A-11)

with V = Bt, we have

VA AV

or

Since V is unitary this simplifies into

i = ej *' e i --1, 2,'", K (A.12)

and

[IK+ , iK+2, .. "raM] [K+ ,tK+2, '.. ]V1 (A.13)

where V1 is an (M -K) x (M -K) unitary matrix.
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Appendix B

In this Appendix, we evaluate the bias expression for symmetric coherent signal

scene described in II.C. For K = 3, the first term of the general bias expression in

(48) can be written as

3kb -_____ r. 2 .t 2)3 I i a(w) a 21

i'-1 k.-1 ( A; - k)

k pi

+ ' t 2 I t ( 12 ) 1(B
- ) 2 A a(w)I I a(°w ) (B.1)

Then, by using (A.12), for i, k < 3 in (50) we have r / = fiik and for i < 3 and k > 4

4#kdi--2(-t# i  + Rb i - 2-i

4r,~j = a'0~ (AtRfA + 66j! e l = 2c a 2,.

With these identities, the first term in (B.1) can be shown to be zero and the second

term can be expressed as

3 a 21-t1 2 -t.)

2 2 ( (M - 3)fi a(w) -2 (w)J. (B.2)

Now, consider the second term of (48) by partitioning it as

3 (3 3 __ __ __ _ _ - -
2 4B(w) I at(wAfl jta(w)

i-1 ak-li- (si k)(Ai -, A)
k ,i I i
k IkI

3kM f-i M 3 fm__-

k-ll-40 -- GWIkPa(w) + a ---- awIk 3 a(w)+at(w)k ta) +at(),k,.1 1.,(z - k ,-,4 1 -1 ( )X t
k *i I i
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MME- akw)fk :a(w) (B.3)
k -4 1=-4 (A, -Ak ) (,iX- , l

k/sl

By applying the orthogonality property between Ok, 4 < k < M and a(w1), 1 < i < 3 in

(50) and with the help of (A.11) - (A.12), it is easy to show that the last three terms

of (B.3) are zeros. Also, from the structural properties of Rf and Rb, we obtain

Rb = Rf + j 2P M sin2(M - 1)w (u114 - u3u). (B.4)

Using this together with (60), we can evaluate the first term of (B.3). For i, k, I < 3

(i, k, I are all distinct),

=4 - f A A/Rf A pt b - -t b -t 2ORf - -3t f ,

=2P Msin2(M -1)wda P Rb J61/l(Uli - U3U)1 / - 2 # R/ Pi i R f l . (B. 5)

Here we have made use of the fact that "i = i e  and

-:I 0t -'- -b Rf 01 = -,Rf for i 0:1.

Making use of the explicit forms of i, i = 1, 2, 3 in (45) and (47), it can be shown that

ft (ulu4 - u3u )fi = 0 , i = 1, 2, 3 (B.6)

and

fi1 Rf p3 = fit eb3 = 0 (B.7)

With (B.6), finally (B.5) reduces to

I-t f--

2 --= R fl flRf #I. (B.8)

This, together with (B.7) and (B.8), simplifies (B.3) into

3 3 3 tkii
B()=-E E E at(w)&kIa(w)

i-I k- 1.I (; = A)(Ai -

k i I/i

k-3i
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Re (AR f 2 ARf Aa~)A t a~)(B.10)

Using (45) and (47), since

A3 Rf Aj2P Msin2(M -1) 3 ulu(32

and

A2t R/ = - j 2P M sin2(M - 1) 2
t
1 u l1 ,

(B.10) can be expressed as

4p 2M 2 sin2 2(M-1)w 
-

B (w)t= 4- I u U2 Re ultA tul at(w)V3ta(w) (B.11)( 2 - 1)(2- %3)

Finally, with (B.2) and (B.11) we have the desired bias expression as

( - + (-2

N

-23 A iIlti Iflf 2~ B (w,)
- 2 (M - 3) + ita(w) 12 _ L(w) + B

i 2N(Xi -2)2 N N

(B.12)

In a similar manner, the variance expression in (49) can be partitioned as

3~ 3(3 3 3 M

NE E E E qijl~ + E qijkI
i 1 j-1 k=1 1-1i k-1 1-4

k , yi I yhj k i

M 3 M M+ E E q;jl + E E q~jk + o(--- (B. 13)
k-4 I1- k-4 1-4

where
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Re( (f a(w)k ita(w) + f at(w)Ajta(w))at(w) & a-t)

From the symmetry of the subscripts, the first term in (B.13) can be shown to be zero.
Moreover, sincei t f! (Rb )Ak = 0 for i < 3 and k > 4, using the definition of fijU in

(50) the second and third terms in the above expression also turns out to be zero.

Now, we evaluate the fourth term in (B.13). For i,1 <3 and k, I < 4, we have

4 fkqj - 6k (6; Rf Pi + JR8bi - Ai2, bij (B.14)

and

kjli = 2i ij tRf . + At R b -) 
= 2vkj Ai 2 bij (B.15)

where we have made use of the identities ji = J i " = i for i < 3 that follow from

(45) and (47) and

M 2tRf (orb , t Rf (or )(E v,OPa)= v, for I>4.
p =4

Here vd is an element of V1. With (B.14) and (B.15) in (B.13), the variance can be

simplified as [131

2 3 MM 1Var(0 (w)) = -N E E E E qijl +  (N0

i=1 j-1 k-4 1-4

3 ia(w 2 5(W + M t
2N2( ' 'a~') k24 1-4 Re(vkl at(w)PI 6fa(w)a (w)pkfia(w)) +0(-N)

i- (-4 -4

2Q(w) 3 i 2a -t 2 1
E -- - a() ( +O( ). (B.16)

N i 1 ( , _ 2)2

Notice that this expression has structually the same form as that for the three

uncorrelated-source scene in (7).
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Appendix B

A New Spectrum Extension Method That
Maximizes the Two-Step Prediction Error -

Generalization of Maximum Entropy Method*

Abstract

Given (n+i) consecutive autocorrelations of a stationary discrete-time
stochastic process, one interesting question is how to extend this finite sequence so
that the power spectral density associated with the resulting infinite sequence of
correlations is nonnegative everywhere. It is well known that when the
Hermitian Toeplitz matrix generated from the given correlations is positive-
definite, the problem has an infinite number of solutions [1] and the particular
solution that maximizes entropy results in a stable all-pole model of order n.
Since maximization of entropy is equivalent to maximization of the minimum
mean square error associated with one-step predictors [2], in this paper the
problem of obtaining admissible extensions that maximize the minimum mean
square error associated with k-step (k _ n) predictors, that are compatible with the
given correlations, is studied. It is shown here that the resulting spectrum
corresponds to that of a stable ARMA (n, k-i) process. The details of this true
generalization of the maximum entropy extension are worked out here for a two-
step predictor along with several other interesting conclusions.

I. Introduction

An interesting problem in the study of autocorrelation forms and their

associated power spectral densities is that of estimating the spectrum from a

finite extent of its correlation function. Known as the trigonometric moment

problem in the discrete case, it has been the subject of extensive study for a long

period [1 - 6]. In view of the considerable mathematical interest as well as the

practical significance of the moment problem in interpolation theory, system

identification, power gain approximation theory and spectrum estimation, it is

appropriate to review the problem briefly in the present context. Towards this, let

* This work was supported by the Office of Naval Research under contract N-00014-894J-1512.
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x(nT) represent a discrete-time, zero mean, wide sense stationary stochastic

process with autocorrelation function,

rk = E [x(nT) x*((n + k) T)] = r*k , k = 0,1, 2,...e (1)

As is well known, the power spectral density S(e) of this stationary process is

given by the discrete-time Fourier transform of its autocorrelation sequence [11,

i.e,

S(O) = , rkei e . (2)

Moreover, S(O) > 0 and

rk M TC S() e -J l . (3)

Clearly for processes with finite power, we have

If S(e)de = r, = E[Ix(t)12] <o, (4)

i.e, S(O) is integrable (belongs to L1 over -x: 0 5 r ). The non-negativity property of

the power spectral density can be characterized in terms of certain Toeplitz

matrices generated from its correlations [2]. Let Tn denote the Hermitian Toeplitz

matrix generated from r o, rl, r 2 ,... rn, and An its determinant. Thus,

ro r r2  ... rn

r, r. r, .. rn.1
Tn = (5)

. o. . ... ...

rn rn.l ... r, ro
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and(1 )

An = det Tn

Then [2, 6]

SO)_ 0 ** An >: 0 , n=0,1,2,... , (6)

i.e., the nonnegativity property of the power spectral density function is equivalent

to the nonnegative definiteness of all Hermitian Toeplitz matrices generated from

its correlations.

Further, assume that the process also satisfies the Paley-Wiener criterion

(causality criterion)(2),

H= 1 n S() dO > -o, (7)

i.e., the entropy H of this process is finite. With this additional constraint, it can be

shown that [7 - 8] the nonnegative property of the power spectral density implies

positive-definiteness for all Tn in (5), i.e., An > 0, n = 0, 1, 2,..., -.

The integrability condition in (4) together with the Paley-Wiener criterion

permits the factorization of the power spectral density in terms of a unique

function with certain interesting properties. In fact, in that case, there exists a

unique function [7 - 91

B(z)- bkz k ,  bo> 0 (8)

k-0

that is analytic together with its inverse in I z I < 1, such that

(1) Here onwards a (or A), a and A stand for scalar, vector and matrix in that order.
Similarly, A*, AT and At represent the complex conjugate, transpose and complex conjugate
transpose of A, respectively. The symbol det A - I A I is used to denote the determinant of the
matrix A.

(2) From (4), the inequality H < + - is automatically satisfied [8].
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lbl< (9)
k=O

and(3)

S(9)= IB(ejl)1 2, ae. (10)

This minimum phase factor B(z) (free of zeros and poles in I z < 1) is known as

the Wiener factor of the given process and represents a causal, digital filter with

square summable impulse response. Its physical meaning is not difficult to

grasp. When driven by an appropriate stationary white noise source of unit

spectral density, this filter regenerates the given stochastic process x(nT), entirely

from the past samples of the input white noise process (see Fig. 1).

w(nT) B(z) ---> x(nT) = Y bk w( (n- k)T)
k=O

Fig. 1. Wiener Filter of a Stationary Process

We are in a position to state the spectrum extension problem: Given (n + 1)

autocorrelations ro, r1, r2 , ... rn, from a stationary stochastic process that satisfies

(4) and (7), determine all solutions for the power spectral density S(9) that are

compatible with the given data; i.e., such a solution S() should satisfy

S(e) >_ 0 (11)

and

S1f (e) e-  dO = rk, k = 0, 1, 2,... n, (12)

(3) B(eie) a lir B(re). In addition to aesthetic reasons, the use of the variable z for the delay
r-+1 -0

operator (in contrast to the usual z-1), translates all stability arguments to be carried out in the
compact region I z I s 1. Notice that r, k = 0 - a real guarantees bk, k = 0 -- to be real; i.e., the
Wiener factor for real processes are real.
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in addition to satisfying (4) and (7).

It is well known that a necessary and sufficient condition for the existence

of such a solution is the nonnegativity property of the Toeplitz matrix T.

generated by the given (n + 1) correlations [2, 3]. Moreover, when T. is positive

definite (such is the case here), the above spectrum extension problem has an

infinite number of solutions(4) [3, 4]. Youla has parametrized this entire class of

solutions for the spectral extension problem in a network theoretic setting in

terms of bounded real(5) (b.r) functions (10]. These solutions also follow from

Schur's theory on b. r. functions [3]. Before examining them, to make further

progress in the present context, it is necessary to gain some additional insight into

the concepts such as maximization of entropy, prediction errors, and the Wiener

factor.

Section II examines the maximum entropy extension and discusses its

significance in terms of possessing a Wiener factor that maximizes the minimum

mean square error associated with one-step predictors. Further, Youla's

parametrization of the class of all extensions that are compatible with the given

data, and their dependence on the maximum entropy solution [10] is briefly

reviewed.

Given ro, r , .. . rn, the Wiener factor that maximizes the minimum mean

square error associated with a k-step predictor is shown to have an ARMA (n, k-

1) structure. The special case of the two-step predictor is treated in Section III

and using an induction argument the general case is proved in Appendix A.

(4) When An = 0, the above extension problem has a unique solution.

(5) p(z) is said to be bounded real (b.r) if I p(z) I < 1 in I z I < 1 and is real for real z. By Cauchy's

inequalities if p(z) = P pkZk , then I Pk I < 1 for all k. Further, if I p. I = 1, then p(z) a 1 .
k-0
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Using Youla's parametric formulation, an explicit solution for the two-step

predictor is worked out and presented in Section III.

IL Maximum Entropy Solution and the Class of All Extensions

A geometric interpretation of the class of admissibie solutions is well

known [1, 4, 51. Clearly, under the hypothesis

ro r, r 2  ... rn

r, ro r, ... rn 1

An = > 0, (13)

rn  r_ 1 . . .  . . .  ro

any admissible extension rk , k = n + 1 -- c, should satisfy

Ak > O, k=n+l-4-. (14)

Consequently, at the first step rn+1 = x must be chosen so that

ro  r, ... rn  x

r I  ro r I  rn

An+ l (x) > 0. (15)

*# * #*

x rn  r_1  ro
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Using well known matrix identities(6 , 7), An,+1(x) can be expanded as

An -1 An+ 1(x) = A; - 1 IX-4n 2 , (16)

where

n= W Tn-1 Yb (17)

yf =A[rl, r2 . . nT,

and

7b -4 [in, rn.1. r1]T

In turn, (16) implies that, the set of values x that satisfy (15) is the interior of a

circle with radius

> 0 (18)

An-I

and center 4n given by (17).

The general rule is now conceptually clear: Having selected rn+1 = x

consistent with (15), rn+2 can be chosen from the interior of a circle with radius

Xn+1 = An+I/An and center 4n+l and so on. Notice that except for -n and 4n which

are uniquely determined by the given data, all successive Xk and 4k depend on the

particular rule used to pick rk from the interior of the respective circles k = n+2 -*

(6) Let A be an n x n matrix and Anw, Ane, Asw , As denote the (n - 1) x (n - 1) minors formed
from consecutive rows and consecutive columns in the northwest, northeast, southwest and
southeast corners. Further let Ac denote the central (n - 2) x (n - 2) minor of A. Then from a
special case of an identity due to Jacobi [111,

Ac IAI = Anw Ase - Ane Asw

(7)
A B = AIID-CA-IDI

C D
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One particular choice, however, has several interesting properties. To observe

this, first notice that(6) for any k,

(I (Ak12_ I4A() 12) (19)-k-
which gives the useful identity

Ak+l Ak( "kl

Xk+1 = - 1- 2 !)k. (20)
Ak Ak= AktJ

Here, by definition A+ denotes the minor of Ak+j obtained by striking out its first

column and last row. From (20), the sequence k of positive numbers for k = n

is always monotone nonincreasing and has a limit given by [71

limAk= b 2 >0 (21)

k--+ Ak-1

with bo as in (8) representing the constant term in the Wiener factor. Since Xk < n

for k = n -- c, this further implies that

b 2 :5 = A (22)

with equality if and only if

1+)1- O, k=n-*+.

Or, equivalently, in that case

Xk = - ,k =n-o. (23)An-1

From (22), (23) and (16), bo assumes its maximum possible value

(bo)ma= A (24)

if and only if
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x = rk+1 -- 4k, k = n o, (25)

i.e., only when all extensions are at the centers of the respective admissible circles.

Since b2 represents the minimum mean square error associated with a one-

step predictor that makes use of the entire infinite past(8 ) [2], the above completion

rule suggests that the unique extension so obtained by identifying each r k , k = n +

1 --* 0 with the centers of the admissible circles also maximizes the minimum

mean square error of a one-step predictor of the given process, i.e., of all the one-

step predictors that can be generated from each admissible completion, the one

above has the maximum value for the minimum mean square prediction error

and in that sense it is maximally robust. Interestingly, this is also the maximum

entropy extension originally formulated by Burg [12, 13]. To see that the above

extension also possesses maximum entropy among all possible extensions, it is

2
enough to relate the entropy H of the process and the prediction error b o.

Towards this purpose let dk, I k I 0, 1, 2, . . . , represent the Fourier

coefficients of In S(O). Thus,(9 )

dk = I- in S(0) e- 9 dO (26)

and hence [4]

in S(O)= dk e
jkO (27)

k=-00

or

(8) Using least mean square theory it follows that the best one step linear predictor

n-I

X(T) 7, wk x(-kT) that makes use of n past samples results in a mean square error
k-O

8n = An / An-1. Clearly from (21), 1ir 8 = b .
i -* -

(9) The Paley-Wiener criterion (7) guarantees that InS(O) is well defined almost everywhere.
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S(O) = exp(d o) exp dkeJw) exp dkeikOj = L(e) L* (ei s ) (28)
k1 k 1

where

k exp ~(d ./2) k Z .( 9
L(z),a exp (d./2) exp kk p (29)

Clearly a o = 1. On comparing (10) and (28), we can associate(I0 ) L(z) with the

Wiener factor B(z), and in that case by equating (8) and (29), we obtain

bk = ak exp(do/2), Iki 0 (30)

In particular, from (26) [2, 5, 6]

b2 = exp(do) = exp in S()dO = exp(H) (31)

This one-to-one relationship between entropy H and the one-step prediction
2.

error allows one to conclude that the above extension method that maximizes b2 is

also the maximum entropy extension. The maximum entropy solution plays a

basic role in parametrizing all other admissible extensions. In a network

theoretic setting involving positive-real (p.r.) fimctions, Youla has shown that, in

the case of real correlations, every admissible solution S(O) can be represented as

[10]"

S(6) = I Bp(ej() 12 (32)

where, the Wiener factor Bp(z) is given by

BP(z) = r(z) (33)

Here, F(z) is a b.r. function, analytic together with its inverse in I z I < 1 (minimum

(10) Notice that L(z) is also analytic together with its inverse in IzI 1 1.
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phase factor), that is associated with the spectral factorization

1 -I p(ei °) 12 = Ir(ee) 12

or, more compactly, with the factorization

1 - p(z) p.(z) = '(z) r.(z) (34)

where, by definition

p.(z) = p(1/z)

and p(z) is an arbitrary bounded real function (5 ). Further,

Dn(z) __ Pn(z) - zp(z) P,(z) (35)

and Pn(z) is the unique degree n polynomial generated by the Levinsion algorithm

from the given correlations ro, r1, r2, ... rn, through the recursion [14]:

1- s Pk(z) = Pk.l(z) - SkzkPk.l(1/z), k = 1, 2,... (36)

Here Sk, k = 1, 2,... are the reflection coefficients given by

(1)with Ak as defined in (19)-(20). This recursion is carried out under the

initialization

Po(z) =

and

rl

Interestingly, Pn(z) can be compactly written as(11)

(11) The Levinson recursion (36)-(37) follows from (38) through an easy determinant
expansion (6 ) .
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ro r, . rn

rI  ro ... ... rn.1
1 • ... ao + a1 z + a 2z 2 +... anzn (38)

Pn~)= k An-1 *.. . .. =
rn.1 ... ... ro  r,

z z n 'l  z 1

and using Rouche's theorem [15] (or otherwise) on (36) and (35) repestedly,

through an induction argument it is easy to show that Pn(z) and hence Dn(z) are

strict Hurwitz Polynomials.(1 2 ) Moreover, by definition Pn(z) represents the

polynomial reciprocal to Pn(z), i.e.,

Pn(z) = z n Pn(1/z).

Thus, p(z) b. r. implies that Bp(z) is analytic together with its inverse in

z I< 1 with square summable Fourier coefficients. Clearly, p(z) parametrizes S(O)

and moreover all these extensions satisfy the correlation matching property

involving the first (n+-) coefficients. In Youla's representation (10], all such

spectral extensions can be realized as the real part (on the unit circle) of the input

impedence of a cascade of (n+l) lossless, equi-delay, transmission lines that has

been terminated upon an arbitrary passive load W(z). The transmission lines

with characteristic impedences Ro, R1 , ... ,R, are generated from the given real

correlations such that, the junction (mismatch) reflection coefficients sk=(Rk-Rk.

1)/(Rk+Rk-1) , k = 1, 2,... n, are given by (37) with Ro=r o. In this representation p(z)

represents the reflection coefficient of the load W(z) at the far end normalized to

the characteristic impedence Rn of the last line, i.e.,

(12) A Hurwitz Polynomial has all its zeros in I z I > 1. A strict Hurwitz polynomial has all its

zeros in I z i > 1. Note that rk, k = 0 - n real implies that the coefficients ak, k = 0 -, n in (38)
are also real.
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p(z) = W(z)-R, (39)

W(z) + R,

To obtain the maximum entropy solution explicitly, we proceed to evaluate

the entropy HP associated with the general solution(32) and maximize it with

respect to the free parameter p(z). Since

2
HP J In S(0) dO In boH -21c

from (8) and (32)

b 2 = B2 2( = r () ( =r2(0) An (40)
Dn (O) An-1

and using (24), (31)

HP = In -n[1/r 2(0)] = HtME-ln[1/r 2(0)] (41)
An-1

Clearly the extension that maximizes entropy is the one where F(0) = 1. Since r(z)

is also b.r., notice that r 2(0) < 1 unless F(z) a 1, and consequently F(o) = 1 implies(5)

p(z) - 0. In Youla's representation, this is equivalent to terminating the last line

on its characteristic impedence Rn (see (39)). Thus from (32) - (35) the maximum

entropy spectral extension has the form

1
S(O) = (42)

I Pn(ee)I 2

and the associated Wiener factor
1 1

BM(Z = = (43)
B(Z) pn(z)  a 0 +a l z+a 2 z 2 +...+anz

represents a stable AutoRegressive form of order n (i.e., AR(n)). Alternatively, van

den Bos has shown that [16] the standard linear prediction method (s ) also leads to
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the same set of Yule-Walker equations as the maximum entropy method and

hence (43) also represents the best linear prediction filter. From (32), (33) and (35)

the polynomial Pn(z) that characterizes the maximum entropy solution plays a

key role in all other extensions, and in particular, the one that maximizes the two-

step prediction error.

HIL The Wiener Factor that Maximizes the Two-Step Prediction Error

Given the correlations ro, r1 , r2 ,... rn, of all the admissible completions

given by (32) and (33), the problem here is to find the one that maximizes the k-step

minimum mean square prediction error. In what follows, we first deal with the

two-step predictor case. It is shown here that maximization of the two-step

prediction error results in an ARMA (n, 1) process. Through a constructive

procedure, the existence of the ARMA (n, 1) Wiener factor is demonstrated for this

case. The general case is dealt with in Appendix A, where it is shown that

maximization of the k-step minimum mean square error results in an ARMA (n,

k-i) process.

Using (29) and (30), the two-step prediction error P2 is given by [2],

P2 = 1bo1 2 + ibIj2 =[1 + I a 11exp InS(8d1 (44)

Naturally, maximization of P 2 is with respect to the unknown autocorrelations

rn+l, rn +2, rn+3,"" and using the relation a, = d, = L In S(O) e- 8 dO, this leads to

2 a1 +1 12) + aI je + * 1 e-Je

ark 2n S(O)
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ffi. +a eJdeo = 0, Ikl>n. (45)
2nfI S(O)

Clearly, (45) implies that the Fourier series expansion for the real periodic

nonnegative function I1 + a, ej I 2/S(e) truncates after the nth term and hence it

must have the form

+ ole " - n ej n gk B2 ( 6I~ ~ 1+ie2  = I ~i
S(O) k--n k=O

or

S(O)= 1i +aleJ12 = IB2(eie)12  (47)

k=0

where

B2(z) = A(z) (48)

A(z) (1 (+a, z) or (i+Lz) (49)

and

n

G(z) = I gkz k  (50)
k=O

Thus, at least formally B2 (z) - ARMA (n, 1), i.e., the Wiener factor that

maximizes the two step prediction error, if it exists, is of the type ARMA (n, 1). To

complete the argument, we must demonstrate the existence of such a factor that

is analytic together with its inverse in I z I < 1.

Toward this purpose, notice that in the case of real correlations, this

specific extension, if admissible, should follow from (32) for a certain choice of the
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bounded-real function p(z) and in that case, on comparing (48) and (33), because of

degree restrictions, the simplest p(z) must have the form(13)

1
p(z) = a . (51)a+bz

For (51) to be bounded real, it is necessary that there exist no poles in Iz[ < 1, i.e.,

al (52)

and

1 <1 (a_±b)2 >1 (53)
a + b ej0

(in addition to a and b being real).

Conversely, when (52) and (53) is true, from maximum modulus theorem

[17], analyticity in I z I < 1, together with (53) implies boundedness for p(z) in I z 1

1. In the present situation, the existence of such a b. r. function as in (51) can be

verified by solving for a, b from (34) - (35) and examining whether they satisfy the

necessary and sufficient conditions (52) and (53). In that case, through a direct

calculation, the degree n requirement for G(z) yields,

ao (
b = o- (54)

an

r(z) =a + Oz (55)
a +bz

where a, 0 satisfies

a 2 + p2 a 2 + b 2 _1 (56)

ac = ab (57)

(13) It is shown in Appendix B that p(z) a + z etc, are not acceptable. (Note that Babz + cz 2 etaentacpae.(oetaBp)

rational implies that p(z) must be rational.)
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and

n(z) =- (kOk zk)
a + bz (58)

with

gk = ak-l b +ak a -an-k+l , k=0, 1,2, ... n. (59)

Here ak, k = 0, 1, 2, . . . n, are the coefficients of Pn(z) (see (38)). Moreover, the

Wiener factor B2 (z) yields the power series expansion (in I z < 1),

B2W = a+2z a + ( -g l3 + bb b2z2+ (60)kk  =7 ° 0 g2 z + ' 
Z 

° b z .

k=0

and hence from (29)-(30)

=_b (61)

On the other hand, from (48)-(49) and (60)

a1 = P or a (62)a

(since bk , Ck , k = 0 -- o@ are real in the case of real correlations). It is easy to show

that the first choice a, = 1/a does not always lead to a bounded real solution for

p(z). In fact, by letting a 1 = /a and equating this to (61), we obtain g, / go = 0,

which in turn implies g, = 0 since go = aoa is a finite number, i.e.,

g= a0b+ala-a, = 0

or

an-a 0 b - -_
aa

which gives
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a 2 2
a = n__%

b a0 a1

From (52), for p(z) to be b.r., I a / b I > 1. However as the strict Hurwitz polynomial

P2(z) = (z + 2X2z + 3) = 2z 2 + 7z + 6 shows

a2 62 -2 2 _ 2<

b 6x7 42

and hence, from (52), a1 = Wa is not an appropriate choice.(1 4) Turning back to (62),

this leads to the only other possibility

a, =-. (63)

Equating (61) and (63), we obtain

- . (64)

a3 go

Using (56), (57) and (59) and after some algebra, (64) reduces to the cubic equation

with real coefficients

x 3+px+q f 0 (65)

where

X a (66)

2
S a1p--21j <0 (67)

and

(14) At times, the above choice can lead to admissible solutions. For example, in the case of the

strict Hurwitz polynomial P2(z) = 5 - 2z + z2, the parameters a, b so obtained generate a b. r. p(z)
leading to an admissible Wiener factor.
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2a 1 Ii
q = _--1-~) (68)qf ao

Clearly, the Wiener factor B2(z) in (60) that maximizes the two-step prediction

error represents an admissible solution, if the cubic equation (65) has at least one

real solution with magnitude greater than unity and further that solution

together with (54) satisfies (53). To examine this, notice that if the discriminant

D = (q2(p)J3 (69)

is negative, then (65) has three real roots and if D > 0 it has one real root and two

complex roots that form a conjugate pair [18]. However, as shown in Appendix B,

the above discriminant is always negative and the corresponding three real roots

can be obtained explicitly by making use of Cardano's formula. In that case, let

32
R = sgn(q) g.=sgn (, a+ )+ a (70)

Then, the three roots are given by [18]

x = -2 R cos (p /3)

x2 = 2 R cos (P/3 +27c/3) (71)

and

x3 =-2 R cos ( /3 + 4 x /3)

where

COS cP q ao (72)
2R3 a21 /

9 2aO

It is easy to show that two of these roots always have magnitude greater than
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unity. This follows from a well-known sufficiency condition due to Cohn(15),

which in the case of (65) reduces to I p I > I q I + 1, for two of its roots to have

magnitude greater than unity. To verify this condition, notice that

Ipl-klq-i = 2 1+--+ a -21-

(a 1)2 +2 (al )>0 (73)

and hence (65) has two roots with magnitude greater than unity and one with

magnitude less than unity. Moreover, without exception(' 6 ) , cos (p 2 0 , which

implies I (p I < ic / 2 or

COS() > COS(, 1=-3 (7_4)

and

1< -COS <y,2 f - COS 1 4 < 1(5

Thus, x2 and x3 have the same sign that is opposite to the sign of x1 . Clearly, the

sign of x2 and x3 is the same as that of q. The structure of these roots is

summarized in Fig. 2. Further, since IR I> / 2/3, using (74) and (75) we also have

2Rl>IxlI>f-3R, -3lRl>1x2 >IRZandjx 3 l<iRI which gives

IXl I> IX 2 1 > IX31. (76)

Thus, using the Cohn criterion, x1 and x2 have magnitudes greater than

unity, i.e., p(z) obtained using any one of these roots is always analytic in I z 1:< 1

(15) For a polynomial flz) = ao + az+. +.. apzp + + anz, ap*0, ifI apf >I ao1 + a, +I.

+ lap-,I +l ap+, +... +Ian I, then f~z) has exactly p zeros inside the unit circle [15].

(16) b I =I ao / an I > 1 , since ao / a, represents the product of the n-roots of the strict Hurwitz
polynomial Pn(z).
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For bounded reality, it remains to show that a, b so obtained from these roots also

satisfy

(a±b)2 > 1.

In what follows, we will first demonstrate this condition for the largest root(17) x1.

In that case, using (66), (70) and (74), x, gives rise to

~aI) 1 x, ijbi 2- f3-jRIjbj 2 1 +b2.L _ 2
2a )

Again, without loss of generality, we can assume a (' ) and b are of the same sign -

say positive ( i.e., x, > 0, b > 1 ) - and hence,

( a(I ) +b )2 > 9 > 1. (77)

To verify the second part, let

/2 2
(a(1)_b) 2 > 2 1+b2+,-] -b = A2  (78)

2 2

To find its minimum, notice that by straightforward algebra = 0 yields

a2
1 +

2a4

But, the second derivative

a2

1a
F2 1 +a

2 2a!

(17) Since j I < 1, there can atmost be two solutions, one corresponding to x, and the other
corresponding to x2 . The solution due to x2 is discussed later.
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2

is always positive and hence, in particular, at b =1 + - the quantity A in (78)
2a

achieves its minimum value given by

Am =/ (2 bo -bo=bo

or

)2 2 '-2
(a A;= = b; > 1.

This completes the proof. The uniqueness for this choice of p(z) is proved in

Appendix C.

To investigate the solution due to x2 , notice that under the above

assumptions ( x1 > 0, b > 1 ), x2 and hence a(2) = x2 b are negative and as a result

I a (2) - b I > 1 is automatically satisfied. For bounded reality of the p(z) so obtained

from a (2 ) and b, it remains to show that I a(2) + b 1 1 . Towards proving this, let

y=a+b=b(a/b+l)=b(x+l) or x=(y/b)-i and substituting this in (65)

yields the polynomial

V(y) = y3 -3by 2 +(3+p)b 2 y+(-1-p+q)b 3

Let yl, y2 and Y3 denote the three real roots of this cubic equation. We will show

that all these roots have magnitudes greater than unity. In fact, from (77) and the

assumptions, we have yl=a )+b>l and further using (73),

V(0) = (-1 - p + q ) b3 >0. Since one of its roots yl is greater than unity and the

ordinate-intercept is positive, to establish the above claim, it is enough to show that

V( 1 ) > 0 and V(- 1) > 0 . In that case, due to its cubic nature, V(y) must have the

shape shown in Fig. 3(a) which corresponds to a strict Hurwitz polynomial. An

easy manipulation shows that

V(1) =(b-1) -- l-b > 0
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and

V(-1) = (b+1) !(--+1-b) > 0,

which, in particular, establishes that Y21 = I a(2) + bI> 1. Thus, p2(z) = 1/( a(2) + bz)

also leads to a b. r. function and consequently to a solution to the original problem.

To complete the proof, it remains to exhaust the remaining choices for b

and xj , viz; (b > 1, xi < 0; b < -1, xi > 0; b < -1, x1 < 0). Of these, for example,

when b>1 and x1 <0 , we have a (1) < 0 and a(2) > 0 and a(3) > 0 and hence

I a(2) + b i>1 is automatic. In that case, we need a(2) - b I >1 and letting

z=a-b =b(x-1 ) orx= (z/b)+1, leads to the new cubic equation

W(z) = z 3 +3bz 2 +(3+p)b 2 z+(1 +p+q)b 3 .

Once again since zi = a( ') - b < - 1 and W(O) < 0, to prove I z21 > 1 , it is enough to

show that W( 1 ) < 0 and W(- 1) < 0. In fact,

W(1) =-(b+l) (1-1+b < 0

and

W(-1) = -(b-1 )(a,-1+b < 0an

and this situation corresponds to that in Fig. 3(b). Thus, I z2= a(2) - b > 1 , etc.(18 )

The remaining case can be dealt with in a similar manner. Notice that, to

determine the bounded reality for P2(Z) , we have made use of the previously

established fact that I a(' ) ± b I > 1.

The general case involving complex correlations can be dealt with in a

similar manner. In that case, to exhibit an admissible solution, it is enough to

(18) Interestingly, the above arguments also establish that I a(3) ± b I > i . However, this is

irrelevant, since I X31< 1
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demonstrate the existence of a bounded function (p(z) is bounded if p(z) <1 in

I zl<1).

Figures 4-6 together with Tables 1-3 show details of maximum entropy

extension and the two-step predictors discussed above in three different situations.

In Fig. 4, the original spectrum corresponds to an autoregressive model of order 6

and the number of known Fourier coefficients is taken to be 7. As pointed out in

the Conclusions (Section IV), the maximum entropy extension results in the

same autoregressive form as the original one and the maximally robust two-step

predictors generate stable ARMA(6, 1) forms with spectra as shown in Fig. 4 (c).

The dotted curve represents the spectrum corresponding to x, and the solid curve

that due to x2 . The corresponding filter coefficients are tabulated in Table 1. In

Figs. 5 and 6, the original spectra correspond to those of ARMA(8, 1) and ARMA(6,

3) processes respectively. In both cases the number of known Fourier coefficients

is taken to be p + 1, where p corresponds to the respective denominator degree.

The associated maximum entropy extension as well as the best two-step predictor

extensions are shown in Fig. 5 (b)-(c), Fig. 6 (b)-(c), and the corresponding filter

coefficients are tabulated in Table 2 and Table 3, respectively. Notice that in all

these cases, the dotted curve appears to be 'closer' to the maximum entropy

extension, while the solid one tends to 'follow' the original one. This is not

surprising, since, from the discussions in Section IV, the entropy corresponding

to the dotted curve is greater than that of the solid one and consequently the dotted

curve is 'closer' to the maximum entropy extension. However, since these

extensions only possess a single zero, they cannot truly approximate spectra

containing a larger number of zeros.

To summarize, through a constructive procedure we have demonstrated

the existence of two Wiener factors that maximize the minimum mean square

error associated with two-step predictors that are compatible with the given
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correlations ro, rl,... rn. They turn out to be stable(19) ARMA (n, 1) filters given

by

B2(z) = n gk k

k=O

where

a =2[(a + b)2 - 1 + (a -b)2 -1,(2

P[(a + b)2 -_1 - /(a - b)2 - 1],

with

a = 2bRcos() or -2bRcos(S2c- (79)

and

b= a.
a.

and gk, k = 0 -* n, as given in (59). Further, R and p are as in (70) and (72),

respectively. As remarked earlier, the two choices for the parameter a in (79) give

rise to two bounded-real fimctions and two admissible Wiener factors.

IV. Conclusions

In this paper, through a constructive procedure, we have demonstrated the

existence of two admissible power spectra with the property that the associated

Wiener factors maximize the minimum mean square error among the class of all

two-step predictors, that are compatible with the given (n+1) correlations of a

stationary stochastic process. Maximization of the two-step prediction error is

(19) Note that Dn(z) is strict Hurwitz so long as p(z) is b. r.

-64-



shown to result in two unique and stable ARMA (n, 1) filters with details as given

in section III. This is a true generalization of Burg's maximum entropy

extension which results in a stable AR (n) filter.

As remarked before, from a geometric viewpoint, the maximum entropy

extension is also maximally robust because the new estimates so obtained are

always at the centers of the admissible circles (see (25)). As a result, in that case

the radius b0 of 'the final circle' has the maximum possible value 1A/An-1 •

Naturally, any other extension cannot have all its new estimates at the centers of

admissible circles and from (20) - (22), it now follows that the radius of 'the final

circle' for any other admissible extension will be strictly less than that

corresponding to the maximum entropy extension. Thus, the radius of 'the final

circle' may be taken as a measure of the robustness for the extension under

consideration. In the case of ARMA(n, 1) extension, from (21) and (60), the 'final

radius' is given by

bo= /=v(a + b) 2 -1 + 2/( -()8-0)A 1 ASo=go F2a I -  I' (02a_ An- 1 n

where a I > b I + 1 and I b I>1. Since the radii of admissible circles form a

monotone nonincreasing sequence, this implies that all ARMA (n, 1) extensions

have a 'final radius', which is at least 70% of the maximum possible value. Since

the specific ARMA (n, 1) extension discussed in Section III maximizes the two-

step prediction error (lbo 2+1 b1 j2), the final radius in that case should possess a

tighter lower bound.

Given a finite number of covariances, so far we have demonstrated two

admissible Wiener factors that maximize the two-step prediction error by

exhibiting two b. r. functions from the real roots of a cubic equation. The special

structure of the numerator part of the Wiener factor in (48) together with its
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general form in (33) gave rise to the above cubic constraint that must be satisfied

by all admissible b. r. functions. The particular solutions presented in Section III

involve two of its roots - the largest ones in magnitude - and since there are two

admissible candidates, this raises the natural question : Does the particular

solution given above using the largest root have any unique property?

Interestingly, in such a situation, the solution corresponding to the largest

root possesses greater entropy ( i.e., larger 'final radius') and in that sense it is

most robust among the two solutions. This follows easily by noticing that the

entropy H(a) of an ARMA (n, 1) admissible extension is given by H(a) = In b2 , with

bo as in (80) where a and b as a pair satisfylaj>b+1,Ib=Iao/anl>1. In that

case, it is easy to show that H / aa > 0 and further a = -o is its only stationary

point. Hence, H(a) is a monotone increasing function of a. Referring back to (76),

since a(1) = x1 b is larger than a (2) = x2 b in magnitude, we have H( a (1 ) ) > H( a (2) )

proving our assertion. In this sense, the ARMA(n, 1) extension characterized by

the largest root in Section III is unique : it maximizes the two-step prediction

error and possesses maximum entropy between the two admissible solutions.

The uniqueness of the above ARMA (n, 1) should not be confused with other

admissible ARMA (n, 1) extensions. In fact, from (51), with b as given by (54) and,

for example, letting a{>{bl+1 results in a bounded real function p(z) that

generates an admissible ARMA (n, 1) extension. Thus, there is an infinite

number of admissible ARMA (n, 1) extensions that match the first (n+1)

correlations, and the , irticular one described above is distinguished by the fact

that it is most robust (maximizes the minimum mean square two-step prediction

error and has maximum entropy) among all such ARMA (n, 1) admissible

extensions.

The existence of a single AR (n) type of extension as well as the abundance

of admissible ARMA (n, 1) extensions that match the given (n+1) correlations
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follow from a general result on Pad6 approximations [19]. More generally, given n

= (p + q + 1) correlations, an ARMA (p, q) admissible extension, if it exists, is

unique, i.e., there can be only one admissible extension of the ARMA (p, q) type

that matches the first (p + q + 1) correlations. Of course, if n < (p + q + 1), then the

admissible extensions need not be unique.

Finally, given a set of (n+1) correlations, the question of maximizing the

entropy among all admissible ARMA (n, 1) type extensions is also interesting by

itself. From (31) and (80), this is equivalent to maximizing the above b0 with

respect to the variable a. As pointed out before, abo / aa = 0 results in the solution a

= co and this does not lead to a realizable b.r. solution p(z). Thus, given (n+1)

autocorrelations, an ARMA (n, 1) type admissible extension that maximizes

entropy does not exist.

Further, the natural generalization to k-step predictors (k > 2) that

maximize the corresponding minimum mean square error is shown to result in a

structured ARMA (n, k-i) filter in Appendix A. In general, to identify an

ARMA(p, q) system, (p+q+l) correlations are needed. But if fewer correlations are

to be used to identify the same system, then this approach leads to a feasible

solution. In that case, begining with (p+l) correlations, maximization of (q+l)-

step prediction error leads to an ARMA(p, q) solution. The parametrization of

such filters is, of course, much more complicated.

Appendix. A

Maximization of the k-step Prediction Error

Given a finite set of (n+1) autocorrelations ro, r1 , r2 , ... rn, the problem here

is to find the extension that maximizes the minimum mean square error

associated with the k-step predictor. Using (29) and (30), the k-step minimum
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mean square prediction error is given by

k-1

Pk = X 1bil2= ed(o +I C112+ Ia212+...+ _lk-12) (A.1)
in0

with do as defined in (26). Maximization of Pk with respect to the free parameters

rn+1, rn+2,... leads to

- =0, Iml>n

arm

and using (A.1), this is equivalent to

k(1 (
adoI O1 1 + I (i) 0 Im I>n.(A 2

We will show that the left hand side of the above expression reduces to

k1 a i e 2 ejme dO (A.3)

27{S(O) i o

and this in turn implies that the periodic function given by (A.3) is identically

equal to zero for all Im I> n. As a result, the nonnegative periodic function

e"jai must truncate after n-terms and hence
S(e) i-o

k-1 i = nfie =  gi ej2e

ino if-n i=O

or

k-i 2

I a, ej0

= isO 2 Bk( eJ )2  (A.4)

Ig e ie

iwO
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where

k-1

Bk(z) = - ARMA (n, k - 1). (A.5)

I giz i

i=O

Thus, to complete the proof, it is enough to establish the equality between the left-

hand side of (A.2) and (A.3). Towards this, from (26), we obtain

ado 2=1 - 1__ eJme dO (A.6)arm 2 _' s(O)

and by direct expansion

k-i 2 k-1 k-1 p-1

a i ejie  = X a* + Z Z 2Re( ap eiP.cze e) (A.7)
i=O i-0 pm0 q=O

Substituting (A.6) in (A.2) and (A.7) in (A.3), the desired equality condition between

(A.2) and (A.3) reduces to

k-1 2 I k-1 p-1

Y,-pI2  f2 Re 2Re( ee. a*e-jqe)eimedO, ImI>n.(A.8)
p=ar pO q=O

However,

k-I k-I k-I
I I 2r-1 a e 11 2 Re ep .- (Le-

pf0 ap.0 apffi0 arm

and hence with the above expression in (A.8), a term by term comparison

simplifies (A.8) into
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_ I * e- j q eimdO, (A.9)
m S(O) qe0

wherelml>n and O<pgk-1.

We will establish (A.9) through an induction argument on p. To avoid

cumbersome notations, we will assume (A.9) is true up to p = k - 1 and will extent

that result to p = k. Clearly (A.9) is well known for k = 1 and is proved for k = 2 in

Section III. To make further progress for k > 2, notice that with ak and dk as

defined in (29), straightforward algebra gives the useful identity [1, 10]

ak =( dl ak-1 + 2 d2 ak-2 +. • +(k- 1) dk-1 al + k dk ao ), k>1. (A.10)

and hence

*a F ad -1*D_' =  1 k k -i d 1 -
armk -i d r. I

k iej' k-I
. eJm dO + id--ki -i" 21 f S(O)- a~ rm

where we have made use of (26) and the identity o = 1. By assumption, since (A.9)

is true for p = k - 1, substituting that into the above expression, we obtain

ake = f AM eime dO (A.11)
Ar. 27c_ S(o)

where

[k-1 k-i-i

A() = [+ i a'ie-J(k-i)°+d ei °  e-jq) . (A.12)
imi k-q=O
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Expanding the terms in (A.12) and rearranging them with the help of (A.10), it

k

simplifies into a e - jie. This establishes the identity (A.9) for p = k, and completes
i=O

the proof.

Thus, given ro, r1 , r2,. rn, the Wiener factor that maximizes the k-step

minimum mean square prediction error, has the form

k-1

Bk(z) = -ARMA (n, k - 1).
I gmz m

Notice that the coefficients in the numerator factor here are precisely those given

by (29) and moreover, from (33), this extension should also follow for a specific

choice of rational p(z) with numerator degree (k-2) and denominator degree (k-i).

The denominator degree requirement for Bk(z) together with the above

restrictions on its numerator factor completely specifies the b. r. function p(z) and

hence the Wiener factor. For the existence of such a Wiener factor, the set of

equations so obtained must yield a b. r. solution. Whether this is always possible

for k _> 3, is still an open question.

Appendix B

In this appendix, we will show that the discriminant D in (69) is always

negative. To prove this, with (67) - (68) in (69) and letting a, /ao = y , the

discriminant D simplifies into

D = 2 ( +2p)J3
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4 + 2 27b- +6(1+ ) +8 1+ 2 >o. (B.1)

Since IbI> 1, we have I < I, which gives bL < and with this in the above

expression, it simplifies into

D 55 7 1 y 3 + 61+L y2+8 +_3] 7 Ay)(B2D ~y ~ - ~03.2)
9 3ib2  7L _j2 (b) 3 27

where, by definition

A(y) = y3+6 1+ 1 y2-15y+8 1+_)-. (B.3)

Clearly, to establish D < 0, it is enough to show that A(y) > 0 for all y > 0 and I bI > 1.

Let 21 + -4 ,then l b I >l1implies 2 <5 <4 and (B.3) simplifies into

A(y) = y +30y _15y + (B.4)

The desired result follows if Amin > 0 for y > 0 and 2 < 0 < 4. To find its minimum,

note that

aA(y) = 3y 2 +65y-15 = 0
1y

yields the positive solution

Yo 5 - 2+5

and the minimum value for (B.4) is given by

A(y0 ) = 3P3 -2(p2+5) +5 +15P = Ao(). (B.5)

As Fig. 7 shows A(y o) > 0 for 2 < 0 < 4 and this completes the proof.
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Appendix C

Uniqueness of p(z)

For uniqueness of p(z) in (51), it remains to show that other feasible forms

such as

1 + d1z + d2z2 +... + dn-l zm - 1

p(z) = 3 , m>1 (C.1)a +bz+ Cl z 2 + c2z + ... + CM-, z

cannot give rise to bounded real functions of degree one in (48), unless ci = di = 0, i

= 1, 2,... m-i. To prove this, consider first

p(z) = 1+dz (C.2)
a + bz + cz 2

From (33), since B2(z) = F(z)/Dn(z), the degree one requirement in the numerator of

the Wiener factor B2(z) in (48), translates into the same requirement for the

numerator of r(z). Thus with (C.2) in (34), we obtain

(a + bz + cz 2)(a+bz+CZ 2). - (1 + dz) (1 + dz) = (a + Pz) (a + Pz)

which is the same as

ac (z2 + z- 2) + (ab + bc - d) (z + z- 1) + a2 + b2 + c2 - d2 - 1 = c (z + z- 1) + a 2 + P2.

Comparing the equal powers of z on both sides, we must have either a = 0 or c = 0.

If a = 0, then
1 +dzp(z) =

z (b + cz)

and it is not a b. r. function because of the pole at the origin. On the other hand, if

c = 0, then

1+dz
p(z) + bz
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and substituting this in (35), we obtain

- daozn 2 + (ban - ao + dal)zn 1 +...

a + bz

Since Dn(z) is of degree n, necessarily dao = 0 = d = 0, since ao * 0 and this leads

to

1
p(z) = (C.3)a+bz

Arguing in a similar manner, starting with any m > 2, (C.1) can be shown to

reduce to (C.3). This proves our claim.
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(b) One Step Predictor(Maximum Entropy Estimator) AR(6) - B1(z)
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(c) Two Step Predictors ARMA(6, l) - B2(z)

Fig. 4 One and two step predictors that maximize the minimum mean square error.
Original spectrum corresponds to an Autoregressive model of order 6 given by

1
B (z) =-11.340 - 3.044z + 4.599z2 - 4.825Z3 + 4.171z 4 - 2-504z 5 + z6

The number of Fourier coefficients known is taken to be 7.
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Table 1

One-Step and Two-Step Predictors
that M'vaximize the Minimum Mean Square Error

B'z = Q ;z B (Z () ___
ZJ P(z) ' 1 z) ; B2 (Z) - 2(Z)

B(z), B,(z) and B2(z) represent the original, the one-step
and two-step Wiener factors, respectively.

n = No. of Fourier coefficients used for (b) and (c).

Fig.No. n Model Wiener Factor Coefficients

Q(z)=1

a AR(6) P(z) =1.340 - 3.044z + 4.599z 2- 4.825z 3 +

(oiia)4.171z 4 _ 2.504z 5 + 6

Fia.4 b 7 AR(6) Q1(z) = 1.23
Pj(z) = 1.340 - 3.044z + 4.599z 2- 4.825z 3+

4.171z 4 - 2.504z 5 + z6

c A.RMA(6,1) Q2(Z) =-0.895 + 0.322z 23

(dte )P,(z) =1.243 - 3.009z + 4.632z 2 - 4.948z 3 -

(doted 45 6
4.250z4 - 2.553z + z

c AMA(,1) Q2(z) =1.044 + 0.416z

(soid)P,(z) =1.464 - 3.089z + 4.557z ' .680z- +
(solid) ~4. Oz 4 - 2. 442 z5 +z6
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(a) Original Spectrum ARMA(8,1) - B(z)
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(c) Two Step Predictors ARMA(8,1) - B2(z)

Fig. 5 One and two step predictors that maximize the minimum mean square error.
Original spectrum corresponds to an ARMA(8,1) given by

1.1 + z

1.267 - 0.635z + r 366z2 _ 0.664z + 1.425z - 0.626z + 0.77Z 6 - 0.531z' + zs

The number of Fourier coefficients known is taken to be 9.
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Table 2

One-Step and Two-Step Predictors
that Maximize the Minimum Mean Square Error

Q(z) Q1(z) Q2(Z)
B(z) = p(- ; B(Z)= ; B2(z)=

Pz) P 2Z p2(z)--")

B(z), Bj(z) and B2(z) represent the original, the one-step
and two-step Wiener factors, respectively.

n = No. of Fourier coefficients used for (b) and (c).

Fig.No. n Model Wiener Factor Coefficients

Q(z) = 1.1 + za ARMA(8,1)23 P(z) = 1.267 - 0.635z + 0.866z 2 - 0.664z 3 +
(original)s 1.425z 4 - 0.626z5 + 0.770z6 - 0.531z 7 + z

Q1(z) = 1
Figr.5 b 9 AR(8) jz=1

P,(z) = 1.411 - 1.115z + 1.367z2 - 1.132z 3 +

1.830z4 - 1.007z5 + 0.976z6 - 0.663z 7 +

Q2(z) = - 1.004 + 0.610z
c ARMA(8, 1)23(dotted) P2(z) = 1.563 - 1.623z + 1.898z 2 - 1.627z 3 +

2.258z 4 - 1.410z 5 + 1.194z - 0.663z 7 + zs

Q2 (z) = 0.766 + 0.594zc AR MA(8, 1) P060

(solid) P2(z) = 1.272 - 0.651z + 0.883z2 - 0.680z +

1.439z4 - 0.639z 5 + 0.777z 6 - 0.533z 7 + z8
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Fig. 6 One and two step predictors that maximize the minimum mean square error.
Original spectrum corresponds to an ARMA(6,3) given by

- 1.317 - 1.089z + 1.181z 2 + z3

B(z) 1.340 - 1.201z + 0.961z2 - 1.208z 3 + 0.871z 4 - 0.988z 5 + z6

The number of Fourier coefficients known is taken to be 7.
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Table 3

One-Step and Two-Step Predictors
that Maximize the Minimum Mean Square Error

B(z) = Q(z) ; = Q(z) = Q2(z)
P(z) P(z) B2(z) P2(z)

B(z), B1(z) and B2(z) represent the original, the one-step
and two-step Wiener factors, respectively.

n = No. of Fourier coefficients used for (b) and (c).

Fig.No. n Model Wiener Factor Coefficients

Q(z) = - 1.317 - 1.089z + 1.181z2 + z3

aP(z) 1.340 - 1.201z + 0.961z2 - 1.208z 3 +
(origi1.40nal)21z

(original) 0.871z - 0.988z 5 + z

Fig.6 b 7 AR(6) Q1 (z) =1 2 3
Pj(z) = 1.432 - 1.462z + 1.645z - 1.660z +

1.279z 4 - 1.129z5 + z6

c ARMA(6, 1) Q 2(z) = - 0.879 + 0.485z 2 3

(dotted) P(z) = 1.363 - 1.720z + 1.867z - 1.917z +

1.442z 4 - 1.133 + z6

Q2(z) - 0.934 + 0.649z
c ARMA(6,1) " .,.33, 3

(solid) P2(z) = 1.520 - 1.133z + 1.361z - .333z +

1.072z '4 - 1.124z 5 + z6
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Fig.7 Positivity of A0(,3) for 2 <~ < 4 (see (B.5)).
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